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Assessing Dimensionality of a Set of Items——Comparison of Different Approaches

- . Abstract
This study examines the performance of the following four methodologies for
assessing unidimensionality: DIMTEST, Holland and Rosenbaum‘s approach, linear factor
analysis, and nonlinear factor analysis. Each method is examined and compared with other
wnethods on simulated data sets and on real data sets. Seven data sets, all with 2000
examinees, were generated: three unidimensional, and four two—dimensional data sets. Two
levels of correlation between abilities were considered: p=.3 and p=.7. Eight different real
data sets were used: four of them were expected to be unidimensional, and the other four
were expected to be two—dimensional. Findings suggest that, while the linear factor
analysis often ove.cstimated the number of underlying dimensiOns, the other three methods
correctly confirmed unidimensionality but differed in their ability to detect lack of
unidimensionality. DIMTEST showed excellent power in detecting lack of

unidimensionality; Holland and Rosenbaum’s and nonlinear factor analysis approaches

showed good power, provided the correlation between abilities was low.

Subject terms: DIMTEST, unidimensionality, essential dimensionality, non-linear factor
analysis, item response theory.




Assessing Dimensionality—Comparison

It is well known that most item response theory (IRT) models require the
assumption of unidimensionality. According to Lord and Novick (1968), dimensionality is
defined as the total number of abilities required to satisfy the 2ssumption of local
independence. If there is only one ability affecting the responses of a set of items to meet
the assumption of local independence, then that set is referred to as a unidimensional set.
It has also been long argued that responses to test items are multiply determined
(Humphreys, 1981, 1985, 1986; Hambleton & Swaminathan, 1985, chap. 2; Reckase, 1879,
1985; Stout, 1987; " Traub, 1983; Yen, 1985), and several abilities unique to items or
common to relatively few items are inevitable. The ability which the test is intended to
measure (i.e., the ability common to all items) will be referred to as the dominant ability,
and abilities unique to or influencing responses to few items will be referred to as minor
abilities. Given that item responses are multiply determined, it is intuitively clear that, in
order to satisfy the assumption of unidimensionality, it is required that a given test
measure a single dominant ability. A number of simulation studies have demonstrated that
a dominant ability can be recovered well, using computer programs such as LOGIST, in
the presence of several minor factors (Reckase, 1979; Drasgow & Parsons, 1983; Harrison,
1986). Although counting only dominant dimensions violates Lord and Novick’s (1968)
definition of dimensionality, it is commonly accepted that, in order to apply
unidimensional item response theory models, it is sufficient to show that there is one
dominant ability underlying the responses to a set of items”.

Stout (1987, 1990) provided a mathematically rigorous definition of dominant
dimensionality referred to as essential dimensionality and provided a statistical test
(DIMTEST) to assess whether a set of items met the requirement for essential
unidimensionality. Junker (1988, 1991) further explored essential dimensionality for
dichotomous and polytomous items and established consistency results for the maximum
likelihood ability estimates of 6 under essential unidimensionality. Essential dimensionality

is the total number of abilities required to satisfy the assumption of essential independence.
0




Assessing Dimensionality—Comparison

An item pool is said to be essentially independent ( EI) with respect to the latent variable
vector © if, for a given subset of items, the average absolute conditional (on Q) covariances
of responses to item pairs approaches zero as the length of the subset increases. When
conditional covariances based on only one dominant ability meet the assumption of
essential independence, the response data is said to be essentially unidimensional (dz=1).
In contrast, the assumption of local independence requires that the conditional covariances
be zero for responses to any item pair, and the number of abilities required to those
conditional covariances is the dimensionality. According to this definition of
dimensionality, all major and minor abilities influencing item responses have to be
considered when assessing the local independence assumption; whereas, according to the
essential dimensionality, it is sufficient to consider only the influence of dominant abilities.
Hence, essential independence and essential dimensionality are weaker forms of local
independence and traditional dimensionality respectively.

Stout’s definition of essential dimensionality is conceptually based on an infinite
item pool. An infinite item pool can be conceptualized in two ways: 1. as a consequence of
continuing the test construction process beyond the N items of the test being studied where
the N items become a subset of the item pool; 2. as a consequence of a sequence of finite
tests where each finite test is optimally constructed. For example, a 20—item test is
constructed with the knowledge that the test is going to be only 20 items long and that it is
not necessarily a subset of an optimal 40~item test. In this way, an item pool is a collection
of optimal finite test length tests (for details see Junker, 1991; Junker & Stout, 1991).

In assessing essential unidimensionality of given item responses, DIMTEST assesses
the likelihood that the given set of item responses come from an essentially unidimensional
item pool. That is, DIMTEST assesses whether or not the model generating the given item
responses is close to the EI, d o 1 model. The major focus in assessing essential
unidimensionality of a given set of item responses is to determine how "minor" the

influence of minor abilities is and whether the influence of these minor abilities can be




Assessing Dimensionality—Comparison

ignored when assessing essential unidimensionality.

Historically speaking, linear factor analysis has been used to assess the
dimensionality of the latent space underlying the responses to a set of items. If the results
indicate a one—factor solution, then it can be inferred that one dominant ability is
influencing item responses. There are, however, a number of technical as well as
methodological problems associated with using linear factor analyses to assess
dimensionality. For example, difficulty levels of items and guessing levels of
multiple—choicg items can each play a major role in affecting the factor structure of item
responses (for details see Carroll, 1945; Hulin, Drasgow, & Parsons, 1983, chap. §; Zwick,
1987). Consequently, many attempts have been made by researchers in recent years to
develop new methods to assess dimensionality. Some of the recently developed methods
include nonlinear factor analysis (McDonald & Ahlawat, 1974); Bejar’s procedure (Bejar,
1980); order analysis (Wise, 1981); modified parallel analysis (Hulin, Drasgow, & Parsons,
1983, p. 255); residual analysis (Hambleton & Swaminathan, 1985, p. 163); Bock‘s full
information factor analysis (Bock, Gibbons, & Muraki, 1985); Holland and Rosenbaum’s
test of unidimensionality, monotonicity, and conditional independence (Rosenbaum, 1984;
Holland & Rosenbaum, 1986); Roznowski, Tucker, and Humphreys’ procedures (1991); and
Stout’s unidimensionality procedure DIMTEST (Stout, 1987).

Hattie (1985), Hambleton and Rovinelli (1986), and Berger and Knol (1990) have
reviewed several procedures for assessing dimensionality, including some of the above
mentioned procedures. The main focus of this paper is to study and compare some of the
procedures to assess dimensionality that are most recent, seem promising, and are little
studied. Four procedures are considered and compared in this paper: DIMTEST, Holland
and Rosenbaum’s procedure, nonlinear factor analysis, and linear factor analysis. Linear
factor analysis was used, because of its historical importance, as a benchmark to compare
other procedures. Several sets of unidimensional and multidimensjonal test data were

simulated and used to study the performance of all four procedures for assessing




Assessing Dimensionality-Comparison

dimensionality. The same procedures were then repeated with real test data.

Description of Procedures

Linear Factor Analysis

Linear factor analysis is the most commonly used. approach to assess dirnensionality.
With linear factcr analysis, each extracted factor is presumed to represent a dimension,
and items that load heavily on a given factor are considered good measures of that
dimension. There are a number of fundamental problems associated with applying linear
factor analysis to binary data. First, linear factor analysis assumes that the relationship
between the observed variables and the underlying factors is linear and that the variables
are continuous in nature. But it is clear for dichotomous data that the relationship between
the performance and the underlying latent variable is not linear. Hence, applying factor
analysis to phi or tetrachoric correlations of binary item responses produces difficulty
factors (Hulin, Drasgow, & Parsons, 1983, chap. 8). Second, in computing tetrachoric
correlations, the cell entries of the fourfold table for a pair of dichotomous items sometimes
equal zero, making it difficult to determine an appropriate value for the correlation. Third,
determination of the number of significant factors could be problematic.

In this study the statistical package LISCOMP was used to perform exploratory
linear factor analysis using tetrachoric correlations. Three different approaches were used
to determine the number of significant factors: parallel analysis, the chi~square test of
‘goodness of fit, and goodness of fit statistics (the means and standard deviations of the
squares of residual correlations and absclute residuals).

According to parallel analysis (Humphreys & Montanelli, 1975), the eigenvalues of
. the given correlation matrix are compared with tne eigenvalues of random data. The
random data consist of binary responses generated with the same number of items and

examinees as that of the given data. The largest eigenvalue from the random data is used
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Assessing Dimensionality—Comparison

as the cutoff point for eigenvalues from the actual data to determine the number of
significant factors. That is, the number of eigenvalues of the actual data greater than the
largest eigenvalue of the random data is taken as the significant number of factors
underlying the given data.

The second method used to determine the number of factors was the chi—square test
of goodness of fit from LISCOMP. The third method involves comparisons of means and
standard deviations of squares of residuals and absolute values o” residuals after fit of an
mi—factor model with the corresponding values from the random data. If the residuals are
sufficiently "small," then one can regard the fit of the model as "reasonably satisfactory"

(McDonald, 1981; Hattie, 1985, Hambleton & Rovinelli, 1986; and Berger & Knol, 1990).
Nonlinear Factor Analysis

McDonald (1967, 1980, 1982) and McDonald and Ahlawat (1974) have
demonstrated that applying linear factor analysis to unidimensional binary data yields
"nonlinear factors" rather than "difficulty factors." Nonlinear factors account for nonlinear
relationships among the variables by using higher order polynomials in the factor model
(for example, quadratic and cubic terms). McDonald developed the method of nonlinear
factor analysis (NLFA) to account for the nonlinearity of the data as an improvement over
linear factor analysis. The variables in the model can be expressed as polynomial functions
of latent traits or factors. For exampie, a two—factor model with linear and quadratic

terms would be of the following form:
= 2 2 .
Y, = bz’0+bi1191+bz’1291+bz’2192+bz‘2292+di“i’ (i=1,2,...N)

where Y1 denotes the examinee’s score on item ¢, 91 and 02 denote latent traits, b ik

denotes the factor loading of the i~th item on the j~th common factor for the k—th degree
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element in the polynomial; u denotes the unique factor and di denotes the unique factor
loading for item i. Hambleton and Rovinelli (1986) have demonstrated the use of NLFA to
assess dimensionality and found it to be a promising method. They, however, caution about
the crite"on for the adequacy of the fit of the model.

In the present study, NLFA ~mbodied in the computer program NOFA, developed
by Etazadi—~Amoli and McDonald (1983), was used. The fit of the model is studied just as
in the case of the linear factor analyses, by comparing the means and standard deviations
of squared residuals and absolute residuals with the corresponding values of random data

and linear factor analyses. The chi—square statistic values are not available from NOFA.

Holland and Rosenbaum ‘s Test of Lack of Fit of a

Unidimensional, Monotone, and Conditional Independent Model

Rosenbaum (1984) and Holland and Rosenbaum (1986) have proved theorems
concerning conditional association that can be applied to assess dimensionality. The basic
notion in Holland and Rosenbaum-s (H&R) theorems is that if the items are locaily
independent, unidimensional, and the item characteristic curves are monotone, then the
items are conditionally positively associated. Spe-ifically, the conditional covariances
between any pair of item response functions of a set of unidimensional dichotomous item
responses given any function of the remaining item responses will be nonnegative. The test

of this relationship can be specified as

H:Cov(X,X| 2% X)20wv. H:Cow(X,X| ¥ X)<0
0 ' ]z,j#k’“) ! VT bk

Conditional associations for each pair of items is tested, given the number—right

score on the remaining items. The Mantel-Haenszel test (M—H) (Mantel & Haenszel, 1959)

10




Assessing Dimensionality—Comparison

is used to test this hypothesis. To perform the M—H test on a given pair of items, a 2x2
contingency table is constructed for the pair for each of the possible number—right scores
on the remaining items. The cell values of a 2x2 table for item pair ¢ and jfor examinees
with total score k (k=1,2,... K) on the remaining items can be denoted as the following: ihe
number of examinees who got both item ¢ and item j correct (n11 k)’ the number of
examinees who got both item ¢ and item jincorrect (n00 k)’ the number of examinees who
got item ¢ correct and item jincorrect (n10 k)’ and the number of examinees who got item 1

incorrect and item j correct (n01 k)' The M—H statistic is then given by

g 1t” BlnyJ + 1/2

{ Vingge)

K

where ny; =k§ nyqp and E(ngy ) and V(ny,,.) are the expectation and the variance of

1
14 given by

K
‘s‘"1+k"+1k

Bnyy )= T (2
k= ++ k&
and
n n n n
y 1+k70+k 1k k
ny1a) = 2 +k"0+kE"+1 k740 (3)

)4 —_—
ik (P g1)

The plus subscript in Equations 2 and 3 denotes the summation over that subscript. The
computed Z-value is compared to the lower tail of the standard normal distribution. A
statistically significant Zimplies that the pair of items in question are not conditionally
associated, given the sum of the remaining items and are thus inconsistent with the

unidimensional model. In this manner, the M—H statistic is computed for all N(N-1)/2

11
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pairs of items, where N is the total number of items in a test. If a "large"” number of pairs
are shown not to te conditionally associated, then the unidimensional assumption is
inappropriate.

Since H&R approach tests each item pair with significance level a, the simultaneous
inference for all item pairs can be based on Bonferroni bounds (Holland & Rosenbaurmn,
1986, Junker, 1990, and Zwick, 1987). According to Bonferroni bounds, one would accept
H.. if the number of rejections at level « is around ta, where ¢ is the number of tests
performed, which 4s equal to N{N—1)/2; one would reject H, if at least one test is rejected
at level aft.

Rosenbaum (1984), Zwick (1987), and Ben—Simon and Cohen (1990) have
demonstrated the application of H&R approach to assess dimensioné.lity. Ben—Simon and
Cohen found the H&R approach to be conservative and erroneously misclassified nearly
half of the multidimensional item pools they analyzed as unidimensional. Zwick found
H&R approach to be consistent with other procedures investigated in assessing

unidimensionality of NAEP reading data.
DIMTEST

Stout (1987) developed DIMTEST to test the hypothesis of essential
unidimensionality: the existence of one dominant dimension. Nandakumar and Stout (in
press) further modified and improved the performance of DIMTEST. The improvements
have lead to the following: a robust procedure against presence of guessing in item
responses; a better control of the observed level of significance, and greater power; and

automation of the size of assessment subtests, as described below. The hypothesis to test

unidimensionality can be stated as
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Ho: dE=1 vs. HI: dE.>1

where d B denotes the essential dimensionality of the item pool of which the given test
items are a part.

In order to apply DIMTEST, it is assumed that a group of J examinees take an
N—item test. Each examinee produces a vector of responses of 1s and 0s with 1 denoting a
cotrect response and 0 denoting an incorrect response. It is also assumed that essential
independence with' respect to some dominant ability © holds and that the item response
functions are monotone with respsct to the same dominant ability ©. DIMTEST has
several steps. These are briefly described here (for details see Stout, 1987; Nandakumar and
Stout, in press).

Step 1: The Nitems of the test are split into three subtests: AT1, AT2, and PT.
First, AT1 items are selected so that these items all measure the same dominant ability.
This can be achieved either through factor analysis (FA) or through expert opinion (EO).
If FA method is chosen, M items with highest loadings on the second factor (before
rotation) are selected. In this case, the program automatically determines the size M of
AT1 as a function of the test length and the sample size. If EO is sought, on the other
hand, it is recommended that, at most, one—quarter of the total items should be selected
.hat tap the same ability. After selecting items of AT1, items of AT?2 are selected, also of

“the same size M, so that items of AT1and AT2 have the same difficulty distribution (for
details see Stout, 1987). The remaining items (n=N—2M) form the partition subtest PT. In
the present study, FA is chosen to select AT1 items. For examples where EO is used to
select AT1 items, see Nandakumar (in press).

When FA is used to select AT1 items, the given sample of J examinee responses are
partitioned into two groups. One group of examinee responses (500 examinees
recommended) is used for exploratory factor analysis to select AT1 and AT? items, and the

other group of examinee responses is used to compute the Stout’s statistic T.

10
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Step 2: The second group of examinees (if the first group of examinees is used for
FA) are partitioned into K subgroups based on their PT score. That is, all examinees
obtaining the same total score on PT are assigned to the same subgroup & (k=1,2,...K).

Step 3: Within each subgroup k, examinee responses to subtest items AT1 and AT2

are used to compute the unidimensional statistic T given by

T=(T;-T /I3, (4)
where

"2 "2

r 1 zK ["'k U,k]
i g2l 5,

is computed using items of ATi. The a‘,‘)‘c and a?] i and Sy are given as follows.

The usual variance estimate for subgroup kis given by

R J,

where

Y(") M, U/, and v* = 2 Y(k)/Jk,

with U (1 or 0) denoting the response for item i by examinee jin subgroup %, and J;,
denotmg the total number of examinees in subgroup k. The "unidimensional" variance

estimate for subgroup k is given by

= s

where

oM = zJ" Ui T

11




Assessing Dimensionality—Comparison

And the standard error of estimate for subgroup k is given by

R - R 1/2
where

IR YR LA

l

and

6= eM_ oM 1) (1- ~op(¥))2

The computed T—value is referred to the upper tail of the standard normal
distribution to obtain the significance level. The significant values associated with
unidimensional tests are expected to be large while the significant values associated with
multidimensional tests are expected to be within the margin of the specified level of
significance.

DIMTEST assesses the degree of closeness of an essentially unidimensional model to
the model generating the observed data. This is done by splitting the test items into three
subtests—AT1, AT2, and PT—as described above. When the model underlying the test
item responses is close to essentially unidimensional, items of AT1, AT2, and PT would all
be of the same dominant dimension; therefore, the value of the statistic T computed based
on AT1, AT2 would be "small," leading to the tenability of Ho' When the model
underlying the test responses is not essentially unidimensional, however, items of AT1
would be dimensionally different from items of AT2 and PT and fhe value of the statistic
'I will be "large" leading to the rejection of Ho.

DIMTEST has been found to discriminate between unidimensional and
two—dimensional tests for a variety of simulated test data when the correlation between

abilities is as high as .7 (Stout, 1987; Nandakumar & Stout, in press). Nandakumar (1991)

192
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has shown the usefulness of DIMTEST to assess essential unidimensionality in the possible
presence of several minor abilities. The findings indicate that essential unidimensionality is
established when each of the minor abilities influence relatively few items, or, if minor
abilities are influencing many items, the strength of the influence of the minor abilities is
low. As the strength of the minor abilities increases, the approximation to an essentially
unidimensional model degenerates, inflating the type—I error of the test of hypothesis of
essential unidimensionality. Nandakumar (in press) has further replicated these findings on
a wide variety of real test data. This study also demonstrates the sensitivity of DIMTEST

to major and minor abilities influencing item responses.

Description of Test Data

The Simulated Test Data

Seven data sets, DATA1-DATAYT, were generated. Of the seven, three data sets,
DATA1-DATAZ3, are strictly unidimensional, consisting of 25, 40, and 50 items,
respectively. The other four data sets, DATA4~DATAT, are two—dimensional with length
N=25 and correlation between abilities p=.3, N=25 and p=.7, N=50 and p=.3, and N=50
and p=.T, respectively. All 7 data sets have 2000 examinees. These data set characteristics

are summarized in Table 1.

Table 1 about here

The unidimensional data sets were generated using the three—parameter logistic

model given by

16
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l1—c.

= C. 1 .
P’(G)_ ’+1+ezp{—1.7[ai(6—bi)]} )

The abilities (§) were ‘ndependently generated from the standard normal distribution, and
the item parameters (a 20 i’ci) of real tests as described in Nandakumar (1991) were used in
generating item responses. For example, items of DATA 1 have a larger variability in
discrimination power (ai), ranging from 1.22 to 2.82; items of DATA 2 have a smaller
variability of a, tanging from 1.07 to 2.00. For each simulated examinee, the probability
of correctly answering each item, Pi(O), was computed using the three—parameter logistic
model. For each item 7, a random number between 0 and 1 was generated from a uniform
distribution. If the computed probability, Pi(ﬂ), was greater than or equal to the random
number generated, the examinee was said to have answered the item correctly and was
given a score of 1; otherwise the examinee was given a score of 0. The two~dimensional test
data were generated according to the multidimensional compensatory model (Reckase &

McKinley, 1983) given by

l-—-c¢c,;
P(6,0,) =c, : . (6)
P O T (T Tley  (0,—by)+e,;(05=bg ;) ]

The abilities § = (01,92) were sampled from a bivariate normal distribution with
both means zero and both variances one. Two levels of correlation coefficients between the
abilities were used: .3 and .7. The guessing level was taken to be .20 for all tests. The

discrimination parameters (a,;,4;,) for each item were independently generated as follows:

el

where 4 and ¢ are the mean and standard deviation of the distribution of discrimination

14
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parameters of the respective unidimensional tests with the same number of items. Similarly

b1 ;and by, were assumed to be independent of each other for each item and were generated

as follows:

by~ N, 0), by~ N(p, 0),

where z and o are the mean and standard deviation of the distribution of difficulty
parameters of the ;:espective unidimensional test with the same number of items. For
example to generate test data DATA4 with N=25 and p=.3, the means and standard
deviations of as and b S of item parameters used for DATA1 were used. The item responses

(0,1) were generated exactly as described for unidimensional case by using P;(8) of (6).
The Real Test Data

The real test data used in this study came from two different sources. The National
Assessment of Educational Progress (NAEP, 1988) data for the 1986 US History (HIST)
and Literature (LIT) for grade 11/age 17 were obtained from Educational Testing Service.
The Armed Services Vocational Aptitude Battery (ASVAB) data for Arithmetic Reasoning
(AR) and General Science (GS) for grade 10 were obtained from Linn, Hastings, Hu, and
Ryan (1987). For all data sets, examinees who missed one or more items were deleted from
the analyses. Test sizes and sample sizes for all real tests are given in bottom half of
Table 1. Since all four test data were assessed as unidimensional by the methods employed
in this article (details are provided in Results section), they were combined to form
two—dimensional tests. Four two—dimensional tests were formed as follows. The test data
HSTLIT1 was formed by combining the data of 31 items of HIST with the data of 5 items
of LIT randomly selected from 30 items. Similarly HSTLIT2 was formed by combining the
respouses of 31 items of HIST with the responsss of 10 items of LIT, and the test data G5
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was formed by combining responses of 30 items of AR with the responses of 10 items of GS.
The two—aimensional test BSTGEO contains 31 history items spanning US history from
the colonization period to modern times (HIST) and in addition contains 5 map items
requiring the knowledge of geographical location of different countries in the world. This is
the actual history test according to NAEP. But it was shown using DIMTEST that the 5
map items formed a separate dimension significantly different from history items
(Nandakumar, in press). Hence the data on these 5 map items were removed from the
history test to form HIST with 31 items, and the original history data were treated as a

natural two—dimensional test.

Results

The reswts of DIMTEST and the H&R approach will be studied together and
compared because of the similarity in the underlying theory and because both of them are
statistical tests. Likewise the results of linear and nonlinear factor analysis will be studied

and compared together.
The Simulated Test Data

DIMTEST and H&R Procedure

The results of DIMTEST and the H&R approach for simulated data are presented
at the top of Table 2. For all data sets, the significance levels associated with DIMTEST
indicate that DIMTEST is able to correctly confirm unidimensionality and detect lack of
unidimensionality for both correlation (between abilities) levels p=.3 and p=.T. For
example, all three unidimensional data sets, DATA1-DATAS, have small T—-values and
large significant values, implying the acceptance of the null hypothesis of essential
unidimensionality (here the data were simulated as strictly unidimensional).

Two—dimensional dat‘a., DATA4-DATA?Y, on the other hand, have large T—values, strongly
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rejecting the null hypothesis of essential unidimensionality.

Table 2 about here

The results of the H&R approach indicate that for unidimensional tests, the number
of significant negative partial associations at level a (a=.05) are far below the expected
number (ta), strongly confirming the unidimensional nature of these data sets. Among the
two—dimensional data sets, DATA4 and DATAS (p=.3) were correctly assessed as
multidimensional. For these data, the number of significant negative partial associations at
level a were beyond ta level, and the number of significant negative partial associations
beyond level a/t were 15 and 1, respectively, identifying them as multidimensional. The
test data DATAS5 and DATAY (p=.7), on the other hand, were assessed as unidimensional.
For DATAS5 and DATAY, the number of significant negative partial associations at level a
were within fa level, and the number of significant negative partial associations beyond
level a/t was zero, making them unidimensional tests. It was disappointing to note that for
many of the item pairs measuring different traits, in two—dimensional tests, the covariance
did not approach significance. One reason for this could be the noise in the conditional
score. More research is necessary to draw definite conclusions.

Linear and Nonlinear Factor Analysis

The computer programs used to do the analyses, LISCOMP and NOFA, are heavily
computationally intensive and consume enormous CPU time. In addition, LISCOMP can
not handle more than about 40 variables. For these reasons, not all data sets were included
in the linear factor analyses, but all data sets were included in the nonlinear factor

analyses. The results of linear and nonlinear factor analyses are presented in Table 3.
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Table 3 about here

Based on parallel analyses, one factor would be retained for DATAL, DATA2, and
DATAS; two factors would be retained for DATA4. Whereas, according to the significance
levels associated with a chi—square test of goodness of fit, in Table 3, a two~factor model
fits DATAL, a four—factor model fits DATA2 and DATA4, and a three—factor model fits
DATAS. Similar chi—square values are not available for nonlinear models.

The goodness of fit statistics—the means and atandard deviations of squared
residuals and absolute residuals—are reported for all data sets in Table 3. The top entry in
Table 3 refers to random data (RANDOM) with 25 variables and 2000 examinees. Because
of the cost of computations, only one random data set was used to compare the goodness of
fit statistics. Comparing goodness of fit statistics of RANDOM with DATAL, it appears
that both one—factor quadratic and one—factor cubic models fit as well as the four—factor
linear model. However, since the differences in the magnitude of residuals among models
are small, one could argue that four—factor linear and one—factor quadratic or cubic models
are ov.: fit and that one should go with a more parsimonious model. Observance of the
significance values of the chi—square test of goodness of fit indicates that the two—factor
model fits the data. If one strictly applies the criterion of using random data residuals as a
guide to determine the number of factors, however, a one—factor model with a quadratic
term seems to be the right choice. Similar observations can be made for DATA2.
Comparing goodness of fit statistics for linear and nonlinear factor analysis, it can be seen
that for DATA4 and DATAS, the two—~factor quadratic model fits better than the
three—factor linear model, confirming the two~dimensional nature of data. Here again one
could argue, based on the absolute residuals, that the differences in the residuals are small

and that the quadratic models or three—factor and four—factor linear models are an over fit.
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The significant values associated with the chi-square test indicate overestimation of factors
for DATA4. As expected, the means and the standard deviations of squared residuals and
absolute residuals are much larger for DATA4 (p=.3) than for DATAS (p=.T), reflecting
more deviation from unidimensionality for DATA4. For DATAS, the goodness of fit
analyses support a one—factor quadratic model. Likewise the two—factor quadratic model
fits DATAS, and one—factor quadratic model fits DATAT.

In summary, there are many criteria that can be used to assess dimensionality by
linear factor a.naly‘éis approach. The different criteria may give rise to different conclusions
regarding the dimensionality of the data set in consideration. In the present study it is
shown that the significant values associated with the chi—square test overestimated the
number of factors in most cases. Parallel analyses correctly identified the dimensionality in
some cases. Nonlinear factor analyses exhibited a better fit than the linear factor analyses.
DIMTEST and H&R procedures were excellent in confirming unidimensionality.
DIMTEST demonstrated greater power in detecting multidimensionality for correlations
between abilities as higli as .7. H&R and nonlinear factor analysis methods demonstrated

good power provided the correlation between abilities was low (p=.3).
The Real Test Data

DIMTEST and H&R Procedure

The results of DIMTEST and H&R for real data sets are presented at the bottom of
Table 2. For data sets LIT, HIST, AR, and GS, the T—values associated with DIMTEST
indicate that these data can be approximated by an essentially unidimensional model. The
results of H&R approach for these data are also consistent with DIMTEST results in tht
the number of significant negative partial associations, for each one of the tests, is less than
the nominal level ta. While both approaches strongly support that HIST, AR, and GS are

essentially unidimensional, the decision is not clear for LIT because there is one negative
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partial association that is significant beyond level a/{, and the T—value of DIMTEST is in
the border line region, indicating presence of violations to the unidimensionality
hypothesis.

For two—dimensional data HSTLIT1, HSTLIT2, ARGS, and ﬁSTGEO, the
T—values associated with DIMTEST strongly indicate the multidimensional nature of these
data. Relatively large T—values associated with ARGS and HSTGEO indicate that abilities
within these tests are more orthogonal than abilities in HSTLIT1 and HSTLIT2. The
results based on H&R approach, however, indicate that all four data sets are
unidimensional. For each one of the two—dimensional data sets, the number of significant
negative partial associations is well below the nominal level 4, and none of the partial
associations are significant beyond level a/t. Even with a liberal @ = .10, the number of
negative partial associations did not rise above the nominal level for any of the tests. These
results suggest that the H&R approach lacks power.

On further examination of H& R results, it was found that the M—H Z—values for
many of the item pairs, where items were supposed to be measuring different traits, did not
reach significance level. One explanation for this could be that for these item pairs, the
conditional score (X, ), on the basis of which the examinees are classified into different
groups, may be contaminated with items tapping different abilities. This could be
especially true for HSTLIT2 and ARGS where one quarter of the test items are from the
second dominant dimension. Because of the noise in the conditional score distribution, the
covariance of item pairs measuring different abilities may not be exhibiting significant
negative covariance. A proper conditional score may considerably increase the power of the

H&R approach.

Linear and Nonlinear Factor Analysis
The results of linear and nonlinear factor analysis for a selection of real data sets are
reported in Table 4. The results are consistent with the simulated test data in that for all
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cases nonlinear factor models fit betier than linear factor models. According to the
chi—-square test of goodness of fit, the four—factor model was best fitting for all data sets
where linear factor analysis was performed. Based on ggodness of fit statistics, a one—factor
quadratic model fits LIT, AR, and HSTLIT1 better than three— or four—factor linear
models. Since a one—factor quadratic model fits as well as a two~factor quadratic model, a
more parsimonious model is strongly recommended in these cases. For HSTLIT2 and
ARGS, again it appears that a one~factor quadratic model is appropriate. If chi—square
statistics wexe available along with the goodness of fit statistics for nonlinear factor

analyses, it would have aided in the interpretation.

Table 4 about here

In summary, for real data sets, the results are somewhat consistent with simulated
data sets. For data sets assessed as unidumensional by DIMTEST and H&R, the chi-square
tests based on the linear factor analysis indicated a four—factor model for the same data.
Althorgh we do not know the true dimensionality of real data, these results suggest that
linear factor analysis is overestimating the underlying dimensionality. Whereas, the other
three methodologies were excellent in identifying essential unidimensionality but differed in
identifying lack of unidimensionality. DIMTEST demonstrated greater power than either
the H&R or the nonlinear factor analysis methods. It appears that with the appropriate
conditional score the power of the H&R approach could be improved, and with some type
of fit statistics and the associated significance levels, the power of nonlinear factor analysis

could be improved.
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Discussicn

Based on this limited study, findings demonstrate that the linear factor analysis
approach to assessing essential unidimensionality is not satisfactory. This finding is
consistent with the previous research and theory (see for example, Hambleton & Rovinelli,
1986; Hattie, 1984). In contrast to linear factor analysis, DIMTEST, H&R, and nonlinear
factor analysis were each shown to be promising methodologies to assess dimensionality.

In this study, all three methodologies exhibited sersitivity to discriminate between
one— and two—dimensional test data. For simulated unidimensional test data, all three
procedures were able to confirm unidimensionality. For the real data, all three procedures
were consistent in identifying unidimensionality of HIST, AR, and G3. For
two~dimensional test data, however, the three procedures differed in their ability to detect
the lack of unidimensionality. DIMTEST rejected the null hypothesis of essential
unidimensionality for all two—dimensional tests: both real and simulated. The H&R
approach confirmed the lack of unidimensionality for two—dimensional simulated tests,
provided the correlation between abilities was low (p=.3). For simulated test data with
high correlation between abilities (p=.7), the H&R approach was unable to detect
multidimensionality. Also, for all two—dimensional real test data, the H&R approach was
unable to detect multidimensionality.

The performance of the nonlinear factor analysis methodology was similar to the
H&R procedure for two—dimensional data sets. For simulated test data with p=.3, the
two—factor model with linear and quadratic terms demonstrated adequate fit statistics
(smaller means and standard deviations of squared residuals and absolute residuals). For
simulated tests with p=.7, however, the difference in fit statistics between one—factor and
two-factor quadratic models was not evident. Similarly for two—dimensional real test data
HSTLIT?2 and ARGS, the difference in fit statistics between one—factor and two—factor

models with linear and quadratic terms was not evident. The difficulty in deciding about
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the correct model arises because there is no concrete way of assessing what is meant by
"sufficiently small" for goodness of fit statistics.

In this study, the results associated with the H&R approach were consistent with
the findings of the Ben—Simon and Cohen’s (1990) and Zwick’s (1987) studies. The number
of significant negative partial associations for unidimensional tests was far below the
expected five percent level, making it a very conservative test. Consequently, it did not
exhibit high power. The reason one observes fewer than the nominal level of negative
partial associations is that the conditional score used in computing the covariances is not
perfectly correlated with the latent variable (Zwick, 1987). According to the theorems
proved by Holland and Rosenbaum (1986), the conditional score used to compute the
covariances can be any function of the latent trait. An appropriate choice of conditional
score, therefore, could maximize ihe power of H&R approach.

The results of nonlinear factor analyses were consistent with the findings of
Hambleton and Rovinelli (1986). Factor models with linear and quadratic terms were able
to fit the data better than models with just linear terms. The problem with nonlinear
factor analysis is determining the appropriate number of polynomial terms to retain in the
model. This problem suggests that some type of adequacy of fit statistics with associated
sampling distribution would be necessary to aid in assessing the fit of nonlinear models.

In terms of assessing the degree of multidimensionality, both the DIMTEST and
nonlinear factor analysis approaches can be useful. The 7—values associated with
DIMTEST and the fit statistics associated with nonlinear factor analysis can be helpful in
assessing the degree of multidimensionality. For example, both HIST and AR are
considered as essentially unidimensional data sets, but tbe associated T—values are —1.53
and 1.18 respectively. By contrast, for a two—dimensional data set HSTLIT2, 7=2.03. The
difference in the T—values mirrors the degree of multidimensionality present in the data.
Similarly, the difference in fit statistics between one—factor and two—factor quadratic

models for DATA1 and DATAA4 reflects the degree of multidimensionality.




Assessing Dimensionality—Comparison

In the present study, the test length is more than 25 items, and the sample sizes are
around 2000 examinees. It is not known if the results would hold up for small test lengths
and sample sizes. De Champlain and Gessaroli (1991) have shown that DIMTEST loses
power when both the test length and the sample size are small (for example, N=25 and
J=500). Their results show support for the use of incremental fit index (IFI) using the
nonlinear factor analysis program, NOHARM II, to assess dimensionality in cases of
smaller test lengths and sample sizes. Ben—Simon and Cohen (1990) have found that the
test length and the sample size had a marked effect on the M—H Z—statistic in the
detection of multidimensionality. In their study they tried test lengths of 20, 30, 40, and 50
and sample sizes of 1000, 2000, 3000, and 4000. They found that larger samples and larger
tests facilitated the detection of multidimensionality. They urge a cautious interpretation
of M—H test results in light of test lengths and sample sizes.

Just as linear and nonlinear methodologies share the same philosophical theory,
DIMTEST and H&R approaches share the same theoretical framework. The basic rationale
for the H&R approach is to reject the locally independent, monotone, unidimensional
model if the conditional covariances are significantly negative. By contrast, DIMTEST
rejects the essentially independent, monotone, essentially unidimensional model if the
conditional covariances are significantly positive (it can be shown that the expected value
of the numerator of Stout’s statistic T is mathematically equivalent to average conditicnal
covariances among AT1 items, Stout (1987)). This apparent contradiction in the criterion
for assessing unidimensionality may be resolved by noting the subtle difference in item pair
covariances under consideration. In the H&R approach, one expects the conditional
covariance between items measuring different traits to be negative; whereas in Stout’s
approach, one expects the asymptotic conditional covariance between items measuring the
same trait to approach zero. DIMTEST is specifically designed to assess unidimensionality
and thus looks for the existence of at least two dominant dimensions. By contrast, the
H&R approach looks at all item pairs and detects items that are not measuring the same
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trait as other items of the test.

As for the computational time involved, DIMTEST is most efficient. The
computational time involved for other procedures is significantly more. For example, for a
95 item test with 2000 examinees, DIMTEST uses 4 seconds of CPU time, H&R approach
uses 24 seconds, and nonlinear factor analysis uses 42 seconds; for a 50 items test with 2000
examinees, DIMTEST uses 8 seconds, H& R approach uses 106 seconds, and nonlinear
factor analysis uses 191 seconds. As the test length increases, the H&R approach requires
disproportionately' more time, and the same is true for the nonlinear factor analysis as test

length increases and/or the model gets more complex.

25




Assessing Dimensionality—Co.aparison

Notes

Lhe reader is reminded that testing for unidimensionality is not synonymous to testing for
model—data fit. If a unidimensional model is to be applied to the data, testing for
unidimensionality is the first step. If item responses are essentially unidimensional, then as
a second step, one can test for model—data fit, such as, one—parameter logistic,

two—parameter logisiic, etc.

[}
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. Table 1
Description of Data Sets

Nymber of i f rai

Name JU Traits p? N Traitl Trait2 Mixed*
Simulated data sets

DATA1l 2000 1 25 25 0 0
DATA2 2000 1 40 40 0 0
DATA3 2000 1 50 50 0 ]
DATA4 2000 2 3 25 8 8 9
DATA5 2000 2 7 25 8 8 9
DATAG6 2009 2 3 50 16 16 17
DATAT7T 2000 2 7 50 16 16 17
Real data sets

LIT 2439 1 30 30 0 0
HIST 2428 1 31 31 0 0
AR 1984 1 30 30 0 0
GS 1990 1 25 25 0 0
HSTLIT1 2428 2 - 36 31 5 0
HSTLIT2 2428 2 - 41 31 10 0
ARGS 1853 2 - 40 30 10 0
HSTGEO 2440 2 - 36 31 5 0

17 denotes the number of examinees

%5 denotes the correlation between traits

3N denotes the test length

‘mixed items are a combination of both traits 1 and 2




Table 2
Results of DIMTEST and H&R Analyses

DIMTEST H&R. Test
H.: d =1 H.: co(X, X 2 X;)20
oA \ ¢ J k# %7.7 k)
No.of  No. of No.of Decision

Decision item pairs pairs based on

based on pairs significant gignificant Bonferoni
Name T < DIMTEST t at level a at level aft bounds

Simulated test data
)
DATA1 -1.05 .85 accept H. 300 1 0 accept H,
DATA2 -0.75 .17 accept 780 3 0 accept
DATA3 —-0.94 .83 accept 1225 10 0 accept
DATA4 T7.1¢ .000 reject 300 71 15 reject
DATAS5 3.62 .000 reject 300 10 0 accept
DATA6 10.13 .000 reject 1225 206 1 reject
DATAT 2.41 .008 reject 1225 56 0 accept
Real test data

LIT 1.70 .045 accept 435 16 1 undecided
HIST -1.53 .937 accept 465 6 0 accept
AR 1.18 .118 accept 435 3 0 accept
GS -0.14 .555 accept 300 6 0 accept
HSTLIT1 3.01 .036 reject 630 17 0 accept
HSTLIT2 2.03 .021 reject 820 18 0 accept
ARGS 6.15 .000 reject 780 4 0 accept
HSTGEO 6.19 .000 reject 630 17 0 accept

*
significant at .05 level




Table 3
Results of Linear and Nonlinear Factor Analysis
For Simulated Test data: Goodness of Fit Statistics

" %
'7"{7? SD(riJ-) (.1 SD(| "','j‘) p<

RANDOM

Linear Factor Analysis
1 Factor .0009 .0308 .0250 .0182
2 Factor .0008  .0283 .0225 .0169
3 Factor .0007 .0246 0207 .0160
4 Factor .0006 .0245 .0196 .0147

DATA1L .

Linear Factor Analysis
1 Factor .001 .0412 .0333 .0242 .006
2 Factor .0013  .0359 .0286 .0218 .350
3 Factor .001 .0332 .0262 .0204 .610
4 Factor .0009 .0303 .0236 .0191 .860

Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0185 .0147 .0113
1 Factor Cubic .0003 .0185 .0147 0113

— 2 3
(Y;= by +by; 0-+biof2+bigt+du;)

DATA2
Linear Factor Analysis
1 Factor .0110 .1049 .0982 .0369 .000
2 Factor .0091 .0954 .0896 .0327 .000
3 Factor .0070 .0834 0774 .0310 .000
4 Factor .0061 .0779 .0720 .0278 .000
Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 .0148 0113
—- 2
(Yi" bi0+bi19+bi29 +diui) '
1 Factos Cubic .0003 .0185 .0148 .0113

— 3
(Y= by +Dy B+b,0%kba0%+d ;)

DATA3
Nonlinear Factor Analysis
1 Factor Quadratic .0003 .0186 0147 .0115
— 2
(Yi" bi0+bi10+bi29 +diui)
1 Factor Cubic .0003 .0175 .0138 .0108

_ 2 3

&




Table 3 continued...

DATA4

Linear Factor Analysis
1 Factor .0203  .1425
2 Factor 0017 .0412
3 Factor 0012 .0346

Nonlinear Factor Analysis
1 Factor Quadratic .0021 .0465

= 2

2 Factor Quadratic .0003 .0171

— 2 2
(Y;= byg+byy 10 +by7901 +b5 09 +bi9005+d;u;)

DATAS

Linear Factor Analysis
1 Factor .0047 .0686
2 Factor .0014 .0374
3 Factor .0012 .0346
4 Factor .0010 .0316

Nonlinear Factor Analysis
1 Factor Quadratic .0009 .0307

_ 2

2 Factor Quadratic .0003 .0174

_ 2
(Yj= big+byy101+D;190] +Di91 65 +Di9905+djuy)

DATAG
Nonlinear Factor Analysis
1 Factor Quadratic 0005 .0242
= 2
(Yi— bi0+bi10+bi20 +diui)
2 Factor Quadratir. .0003 .0182

- . 2
(Y= bigby3 1014111901 +D;91 097+ Djp009+d;u;)

DATAT7
Nonlinear Factor Analysis
1 Factor Quadratic .0005 .0223
- 2
(Yi“ bi0+bi10+bi20 +diui)
2 Factor Quadratic .0003 .0175

—_— 2 2
(Y= bigb;1101 +b3390 +Djp1 0 +Dj9005+d;u;)

.1108
.0334
.0276
0623

.0131

.0556
0313
.0289
.0254
.0246

.0138

.0204

.0145

.0176

.0140

.0900
.0240
0212
0379

.0109

.0409
.0218
.0199
.0181
.0186

.0107

0172

.0111

.0137

.0105

.000
.000
.008

.000
011
.245
.600

*
T i are the residual correlations

Kk
p—value associated with the chi—square test of goodness of fit.
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Table 4

Results of Linear and Nonlinear Factor Analysis
. For Real Test data: Goodness of Fit Statistics

* *%
. 7 SD(ry) Ty SD(rgd)  e<
LIT
Linear Factor Analysis
1 Factor .0034 .0584 .0465 .0354 .000
2 Factor .0028 .0526 .0428 .0307 .000
3 Factor 0018  .0439 .0349 0267 .000
4 Factor 0015 .0391 .0310 .0240 .000
Nonlinear Factor Analysis
1 Factor Quadratic .0008 .0278 .0216 .0176
— 2
2 Factor Quadratic .0004 .0207 .0162 .0130
2
(Y b. 0+b11101+bi1201+bi2102+bi220 +d. u)
AR
Linear Factor Analysis
1 Factor .0047 .0683 .0569 .0378 .000
2 Factor .0032 .0561 .0468 .0310 .000
3 Factor .0024 .0489 .0400 .0281 .000
4 Factor 0020 .0447 .0362 .0262 .000
Nonlinear Factor Analysis
1 Factor Quadratic 0007 .0265 .0200 0174
— 2
(Yi"' bi0+b110+b120 +di“i)
2 Factor Quadratic .0004 .0190 .0146 0122
— N 2
(Y;= bygrtbyy 18;+; 9] +big) 0 +bypefa +diuy)
HSTLIT1
Nonlinear Factor Analysis
1 Factor Quadratic .0008 .0275 0213 .0175
- 2
2 Factor Quadratic .0003 .0185 0143 0118

—_ 2 2
(Y;= byg+byy10;+b;1907 +bi0;00+D905+ ;930 I+ djuy)




Table 4 continued...

HSTLIT2

Nonlinear Factor Analysis
1 Factor Quadratic .0006 .0236 .0181 .0152
- 2

(Yi_ bi0+bi10+bi20 +di“i)
2 Factor Quadratic .0004 .0191 .0150 .0119

— 2 2
(Y= big+byg1 0 +Dy1 007 +big10g+y9905+ D998 By +d;)

ARGS
Nonlinear Factor Analysis

1 Factor auadra.nc .0021  .0462 .0268 .0376

2

2 Factor Quadratlc .0004 .0192 .0003 .0123
(Y= big+byy 501 +y 907 +b;91 09439903 +biggf ;)

3 Factor Quadratic .0004 .0175 .0003 .0111
(Y b10+b1119 +b11201+b12102+b12202+b13193

b, 3993 +bi3a01 0913401 03+b;350905+d;1;)

r; i are residual correlations

*%
p—value associated with the chi—square test of goodness of fit.
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